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Abstract. The dynamics of protons in hydrogen-bonded quasi one-dimensional networks are studied using a
diatomic lattice model of protons and heavy ions including a φ4 on-site substrate potential. It is shows that
the model with linear and nonlinear coupling of the quartic type between lattice sites for the protons admits
a richer dynamics that cannot be produced with linear couplings alone. Depending on two types of physical
boundary conditions, namely of the drop or condensate type, and on conditions requiring the presence of
linear and nonlinear dispersion terms, soliton patterns of compact support, whether with a peak, drop,
bell, cusp, shock, kink, bubble or loop structure, are obtained within a continuum approximation. Phase
trajectories as well as analytical studies provide information on the disintegration of soliton patterns upon
reaching some critical values of the lattice parameters. The total energies of soliton patterns are computed
exactly in the continuum limit. We also show that when anharmonic interactions of the phonon are taken
into account, the width and energy of soliton patterns are in qualitative agreement with experimental data.

PACS. 62.30.+d Mechanical and elastic waves; Vibrations – 63.20.-e Phonons in crystal lattices – 05.45.Yv
Solitons – 63.20.Ry Anharmonic lattice modes

1 Introduction

Transport of protons in hydrogen-bonded systems is a
topic of great research interest, aiming to describe non-
linear solitonic excitations which, according to the ideas
of Antonchenko, Davydov and Zolotaryuk [1], would be
related to the formation and propagation of ionic and
Bjerrum defects. In fact these ideas have successfully been
tested in a variety of organic as well as inorganic ma-
terials which form chains, networks and solids utilizing
hydrogen-bonding mechanisms, such as for example Ice
and hydrogen halides which are the best known exam-
ples of inorganic hydrogen-bonded solids [2–4], whereas
proteins, DNA, and other biological macromolecules are
examples of organic hydrogen-bonded chains [5,6]. Pro-
tonic conductivity is usually associated with motion along
a hydrogen-bonded chain of ionic(ionization) and Bjerrum
(orientational or bonding) defects [4,7]. The former in-
volve translational motions of the hydrogen-bonded pro-
tons, whereas the latter are results of rotations of the
hydroxyl ions or some other hydroxyl groups. Trans-
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port of protons may begin either with the passage of an
ionic defect or the passage of an orientational defect, but
thereafter the motion of these defects must strictly al-
ternate [5,6,8,9]. Furthermore, it has been demonstrated
that many biological activities, such as photosynthe-
sis, repair mechanisms of DNA after radiation damage,
metabolism, signal transduction in cells, enzymatic pro-
cesses, and respiration which are driven by electron trans-
fer reactions [10,11], may proceed along a single pathway
which, as the preferred channel for electron transfer re-
actions, can be established by a hydrogen-bonded strand
within the secondary structure [12,13].

One of the questions that has been raised for the mech-
anism of proton conductivity concerns the roles played by
the nonlinear on-site potential for the protons, leading to
three possible scenarios: (1) the model usually consists
of two interacting sublattices: one of harmonically cou-
pled light ions(protons) with a doubly degenerate non-
linear on-site potential of the φ4 type and the other of
harmonically coupled heavy ions. Theories differ in choos-
ing the form of the interaction between the two sublat-
tices. Usually, a nonlinear coupling between the two sub-
lattices is considered [14,15], although there are models
which consider a linear coupling [16,17]; (2) the doubly
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degenerate nonlinear on-site potential is of the double-
Morse type. In fact, as shown by quantum chemistry cal-
culations [18–20], a good approximation of the double-
well potential can be constructed as the superposition of
two symmetrically positioned ion-proton Morse potentials
as well as an ion-ion coupling [21–29]; (3) the nonlinear
on-site potential is of the double sine-Gordon type with
nonlinear [30,31] and linear [32] couplings. In the first two
cases, models are able to describe energy transport, dielec-
tric polarization, and proton storage in hydrogen-bonded
networks but they are unable to explain the protonic mass
in such a system which is required in order to support the
saturated protonic conductivity in ice and other hydrogen-
bonded semiconductors [33]. In the last case, models can
explain simultaneously the ionic and Bjerrum defects for-
mation and propagation using well-known soliton proper-
ties [30–32,32]. Besides the nonlinear on-site potential for
the protons, hydrogen-bonded models with phonon anhar-
monisms occur as well. Such a model was first introduced
by adding higher-order terms such as the cubic and quar-
tic anharmonicities to the harmonic potential [34–39,39].
Later, an exponential nonlinearity was considered, rep-
resented by, e.g., Morse, Toda or Lennard-Jonnes poten-
tials [40–44].

As is well-known, the solitons existing in these models
result from the balanced competition between dispersion
and nonlinear effects. Recently, it has been shown that the
inclusion of anharmonicities in the study of lattice models
can produce qualitatively new effects. In particular, Rose-
nau and Hyman [45] found solutions of the solitary type
without infinite tails, termed solitons with compact sup-
port or compactons [46–51]. In other words, two adjacent
compactons do not interact unless they come into contact
in a way similar to the contact between hard spheres. It
has been shown that the effects of lattice discreteness, and
the presence of a linear coupling between lattice sites are
detrimental to a stable ballistic propagation of the com-
pacton, because of the particular structure of the small
oscillation frequency spectrum of the compacton in which
the lower frequency internal modes enter in direct reso-
nance with phonon modes [48]. The existence of a localized
breathing mode with compact support has been demon-
strated [48]. A quantization condition on the value of the
width parameter of the discrete compacton has been pro-
posed [47].

The aim of this paper is to investigate the proper-
ties of the one-dimensional diatomic chain of protons and
heavy ions, where the proton dynamics is influenced by
anharmonic lattice vibrations. Except for the work by
Kashimori et al. [37], our anharmonic treatment of the
lattice vibrations goes beyond the usual harmonic approx-
imation of a two-sublattice soliton model of the hydrogen-
bonded proton Hamiltonians [1,30,33]. In the model with
quartic nonlinear proton-proton coupling to be discussed,
conditions are considered that require the presence of non-
linear dispersion as well as linear dispersion. In this paper
we show that soliton pattern mechanisms that require a
nonlinear coupling of the protons in adjacent hydrogen
bonds may exist if one properly chooses a class of physical

boundary conditions. The obtained patterns are solitons
of compact support, without infinite tails rather than the
kinks with infinite tails in the coupled double-well model.

The paper is organized as follows. In Section 2, the
model Hamiltonian of one-dimensional interacting two-
sublattice model of anharmonically coupled protons and
harmonically coupled heavy ions is presented. Using two
types of physical boundary conditions, namely the “zero”
or nonvanishing classes of boundary conditions, in the con-
tinuum limit two-component compactonlike solutions are
obtained and their total energies are calculated. Analytic
expressions for the dependence of the breakdown thresh-
old value on the nonlinear parameter, on the constant cou-
pling between the two sublattices, and on the velocity of
the soliton patterns are derived. The last section contains
a summary and conclusions.

2 The model and analytical results

2.1 The model

In the study of proton transfer processes in hydrogen-
bonded systems, it is usual to consider one di-
mensional chains, the so-called Bernal-Fowler fila-
ments [1,2,27,52,53], which consist of two coupled sub-
lattices · · ·X −H · · ·X −H · · ·X −H · · ·X −H · ··, where
the hydrogen atom H (or proton H+) with mass m in each
lattice unit is connected to its adjacent heavy ions or more
generally hydroxyl groups X or (X−) via either a cova-
lent (−) or a hydrogen (· · ·) bond of mass M (m < M),
forming a hydrogen bonded bridge X − H · · · X [1,37].
The covalent and hydrogen bonds in a X−H · · ·X config-
uration are interchangeable, viz., the proton in the bond
that links the two X ions together can tunnel between
two equilibrium positions which are energetically approx-
imately equivalent. In such a case, the two-dimensional
intrabond proton potential is assumed to be a symmetric
double-well function of a general form with two minima.
This double well potential is also motivated physically by
considering the simultaneous electromagnetic interaction
of the two proton neighbour heavy ions (details on the
structure of this potential are given in Refs. [54,55]). A
typical example of such a potential for the proton in the
hydrogen bond is the well-known double-well potential [1]:

V (un) = V0Vsub (un), (1)

with

Vsub (un) =
(

1 − u2
n

u2
0

)2

, (2)

where un denotes the displacement of the nth proton with
respect to the center of the heavy-ion pair, V0 the potential
barrier, and 2u0 [ the two minima (±u0, 0) correspond to
the degenerate ground states of the chain] is the distance
between the two minima of the double-well potential, as
illustrated in Figure 1.
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Fig. 1. A symmetric double well potential for the proton in a
hydrogen bond of the chain.

Generally, it is not possible to provide a double-well
form of the intrabond proton potential within a stan-
dard diatomic chain, using only nearest-neighbour inter-
actions. Therefore some additional interactions with ap-
propriate parameters, forbidding the adjacent heavy ions
to approach each other very close, should be included. For
archetypal simplicity of the 2C model, it is sufficient to
impose either, (i) an external, single-well on-site poten-
tial for each heavy ion of the chain, periodically located
at a sufficiently large distance or instead; (ii) a nearest-
neighbor coupling between adjacent heavy ions with suf-
ficient strength and large equilibrium distance between
them. Thus in order to describe still better these physi-
cal phenomena in the hydrogen-bonded chains, there exist
other types of double-well potentials such as the Double-
sine one used by Pnevmatikos [30] or the Double-Morse
one placed tail-to-tail used by Karpan et al. [27]. In ad-
dition these potentials possess the characteristic of taking
account of the variations both in the height of the double
well potential and in the position of its minima. However
with these potentials, it is very difficult to have analytic
solutions. The advantage of the φ4 potential that we use is
that not only is it possible to obtain analytical solutions
in the continuum limit, but also that this model proves
to be of relevance for the description of proton transfer in
hydrogen bonds [52,53].

The total Hamiltonian of the system is:

H = H1 + H2 + H3, (3)

where the Hamiltonian of the proton sublattice [37] is:

H1 =
∑

n

[
1
2
m

(
dun

dt

)2

+ V (un)

+
1
2
mC2

0 (un+1 − un)2 +
1
4
mCa (un+1 − un)4

]
, (4)

in which the two last terms represent the harmonic and
anharmonic couplings, respectively, with C0 the character-
istic velocity and Ca the anharmonic coupling parameter
between neighbouring protons.

For what concerns the state and motion of the heavy
ion in our model, we use simply a harmonic oscillator with

low frequency acoustic-vibration, on account of the large
mass associated to a large number of atoms or atomic
groups. Thus the Hamiltonian of the heavy-ion sublattice
is [52,53,55,56]

H2 =
∑

n

1
2
M

(
dyn

dt

)2

+
1
2
Mv2

0 (yn+1 − yn)2, (5)

where the last term describes an harmonic coupling be-
tween neighbouring heavy ions pairs.

The last contribution to the total Hamiltonian H of
our model arises from the dynamical interaction between
the two sublattices and describes the modulation of the
double well potential caused by the variation of the dis-
tance between the heavy ions that surround the proton.
This energy can be measured experimentally or estimated
from approximated theoretical expressions [56]. The shape
that we use is proposed by Braun et al. [60,61]. It takes
into account the interactions between the relative move-
ments of atoms in two chains. It can also describe interac-
tions between donors and acceptors [1,55]. In the discrete
lines of Josephson transmission, it describes the inductive
coupling [56]. The interacting Hamiltonian is given by:

H3 =
∑

n

χ (yn+1 − yn)
(
u2

0 − u2
n

)
, (6)

where χ measures the strength of the coupling between the
two interacting sublattices. From the total Hamiltonian,
one can derive, in dimensionless form, the equations of
motion as follows:

m

(
d2un

dt2

)
= mC2

0 (un+1 + un−1 − 2un)

− V0
dVsub(un)

dun
+ mCa

[
(un+1 − un)3

+ (un−1 − un)3
]

+ 2χun (yn+1 − yn) (7)

M

(
d2yn

dt2

)
= mv2

0 (yn+1 + yn−1 − 2yn)

+ χ (un−1 − un) (un−1 + un). (8)

Equations (7) and (8) are not solvable analytically. By
assuming that the coupling between neighboring sites is
sufficiently strong, the discrete variables un (t), and yn (t)
can be replaced by two continuous functions of space and
time u (x = na, t) , y (x = na, t), and under this continuum
approximation, equations (7) and (8) become,

m

(
d2u

dt2

)
= ma2C2

0

(
d2u

dx2

)
+ 3ma4Ca

d2u

dx2

(
du

dx

)2

+ 2aχu

(
dy

dx

)
− V0

dVsub (u)
du

(9)

M

(
d2y

dt2

)
= Ma2v2

0

(
d2y

dx2

)
− 2aχu

(
du

dx

)
(10)

where a is the lattice parameter.
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2.2 Soliton excitations

We now turn our attention to possible travelling wave so-
lutions. For the sake of convenience, we can look for so-
lutions with fixed profile moving at a constant velocity v.
Thus in the moving frame and as a function of the moving

dimensionless variable s =
x − vt

a
, equations (9) and (10)

yield,[
1 − V 2

1 + 3Cnl

(
du

ds

)2
](

d2u

ds2

)
=

λ
dVsub (u)

du
− 2χ1u

(
dy

ds

)
(11)

(
1 − V 2

2

)(d2y

ds2

)
= 2χ2u

(
du

ds

)
(12)

where V1 =
v

aC0
and V2 =

v

av0
are the scaled (dimension-

less) soliton velocities of protons and heavy-ions, respec-
tively. Cnl is the parameter that controls the strength of
the nonlinear coupling and is related to the anharmonic

coupling coefficient Ca by the relation Cnl =
Ca

C2
0

, while

χ1 =
χ

mC2
0

and χ2 =
χ

Mv2
0

are the parameters that con-

trol the strength of the coupling between the two interact-

ing sublattices. Finally λ =
V0

mC2
0

denotes the scaled am-

plitude of the periodic potential and measures the effective
depth of the proton potential. Integrating equation (12),
one obtains

dy

ds
=

χ2

(1 − V 2
2 )

u2 + K1 (13)

where K1 is a constant of integration determined from the
boundary conditions. Two types of boundary conditions
are being used, namely the trivial or the classical classes
of boundary conditions.

2.2.1 Soliton excitations with“zero” type boundary
conditions

“zero” boundary conditions are appropriate for drop and
peak soliton solutions [51], and are defined by the expres-
sions

du

ds
−→ 0, u −→ 0, as s −→ ±∞

dy

ds
−→ 0, as s −→ ±∞. (14)

Considering equation (13) with these boundary conditions
equation (14) substituted into equation (11), one obtains[

1 − V 2
1 + 3Cnl

(
du

ds

)2
](

d2u

ds2

)
=

λ
dVsub (u)

du
− 2χ1χ2

(1 − V 2
2 )

u3. (15)

The solutions of equation (15) can best be analyzed in the

phase plane
(

u,
du

ds

)
. Thus, equation (15) can be treated

as an autonomous dynamical system given by

dp

du
=

1
p (1 − V 2

1 + 3Cnlp2)

[
λ

dVsub (u)
du

− 2χ1χ2

(1 − V 2
2 )

u3

]
(16)

where the derivative p =
du

ds
, describes the elongation of

the energy bonds in the system. The first integral of this
equation, describing the phase portraits of the dynamical
system [see equation (7)], may easily be obtained with the
boundary condition given by equation (14) and can be
written as [52]

p4 − 2p2
0p

2 = α
(
u4 − 2βu2

)
(17)

where p0 =

√
V 2

1 − 1
3Cnl

, α =
4λ
(
V 2

2 + η − 1
)

3Cnlu4
0 (V 2

2 − 1)
,

β =
u2

0

(
V 2

2 − 1
)

V 2
2 + η − 1

with η =
χ1χ2u

4
0

2λ
. It is clear from the

nonlinear equation ( 17) that the system carries out sym-
metrical oscillations of low amplitude around the single
stable equilibrium point (0, 0), when η > 1 with V2 ∈ ]0; 1[,
or when η < 1 with V2 ∈ ]V22; 1[, where V22 =

√
1 − η, and

for positive values of Cnl. In such case, there is no double-
well potential. There is only one minimum of the potential
and thus no localized soliton solution exists in this case.

But when Cnl < 0, this stable position is transformed
into an unstable one, and any perturbation of the system
can induce destruction of the structure.

For η > 1 and V2 ∈ ]1;∞[, or for η < 1
and V2 ∈ ]0; V22[ ∪ ]1;∞[, the system admits
three equilibrium positions including two unstable ones[(−√

β, 0
)

and
(√

β, 0
)]

, and one stable one at (0, 0).
Thus, the system carries out oscillations of low amplitude
around the single stable equilibrium point (0, 0). Beyond
certain upper-bound values of the amplitude, unlimited
motions occur, leading to the destruction of the system.
However, when Cnl takes a negative value, under the same
conditions the system can carry out two types of oscilla-
tions: oscillations of small amplitude around the stable
points

(−√
β, 0
)

and
(√

β, 0
)
, or oscillations of very large

amplitude until reaching the two stable positions. When
Cnl increases upon reaching the threshold value

Cnlcr1 =

(
V 2

2 + η − 1
) (

V 2
1 − 1

)2
12λ (V 2

2 − 1)
, (18)

the phase portraits change qualitatively. Indeed, singular
points are almost present in the phase plane plots. One
can note the disappearance of the separatrix, indicating
the disintegration of soliton solutions. As one can readily
see from equation (18), the associated threshold values de-
pend on the soliton velocities of protons and heavy-ions,
the nonlinear parameter and on the effective depth of the
proton potentials. In order to solve equation (17), we in-
troduce the following condition(

V 2
2 + η − 1

) (
1 − V 2

1

)2 − 12λCnl

(
V 2

2 − 1
)

= 0 (19)
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Fig. 2. Representation of the field of two-component compact
solutions u (for the proton) and y (for the hydroxyl) as a func-
tion of the position s, corresponding to the waveforms: (a) the
peak solitons (peakons) and (b) the drop solitons, according to
equations (20) and (22) respectively, with the condition equa-
tion (19) for η = 3, u0 = 1, V2 = 1.5, V1 = 1.5, s0 = 0,
Cnl = 0.44, χ2 = 1 and λ = 1

for which soliton patterns are available. After some
lengthy algebra, analytical solutions have been obtained
which for the sake of clarity are presented in the following
manner.

2.2.1.1 Peak solitons (peakons)

These solutions appear when equation (17) is solved using
equation (19). For the motion of the proton, the solution
describing a single peak soliton defined by merging the
two solution branches is:

u = exp
[
± p0√

β
(s − s0)

]
. (20)

The solution for the heavy-ions motion can easily be ob-
tained by inserting equation (20) into equation (13) and
using the boundary conditions (14), leading to

y = ± χ2

√
β

4p0(1 − V 2
2 )

exp
[
±2p0√

β
(s − s0)

]
. (21)

Graphs representing these solutions are depicted in
Figure 2a.

2.2.1.2 Drop compactons

This terminology is introduced to designate solutions that
usually have the form of hump solitons but are defined

now over a compact support in space and which, be-
cause of their form and properties, are reminiscent of hard
spheres [51]. The proton waveform is given by

u = ±
√

2β sin
[

p0√
β

(s − s0)
]

(22)

and the heavy-ion waveform is given by

y =
βχ2

2(V 2
2 − 1)

[
(s − s0) −

√
β

2p0
sin
[
2p0√

β
(s − s0)

]]
. (23)

Figure 5b presents the double solution for the two sublat-
tices. The width of this drop soliton can be evaluated and
has the form

Ldrop = π

√
β

p0
.

By taking into account equation (19), it was obvious to no-
tice that this width of the drop soliton is independent of
the anharmonicity parameter Cnl and the coupling param-
eter of the two sublattices χ. However, this width increases
with the speed V1 of the proton particles and decreases
with the effective depth λ of the substrate potential. We
also notice that the amplitude of this type of wave varies
with the propagation velocity V2 of the heavy-ions and
the coupling parameter χ (for a fixed value of V2, the am-
plitude decreases when the coupling strength between the
two sublattices increases). Hereafter, the energy of these
configurations is evaluated. The total energy of these soli-
ton patterns can be calculated by inserting the explicit
solutions into the expression for the Hamiltonian density,
that is:

Etotal = mC2
0E1 + Mv2

0E2 + χE3 (24)

with

E1 =
∫ +∞

−∞

[
1
2
(
1 + V 2

1

)(du

ds

)2

+
1
4
Cnl

(
du

ds

)4

+ λVsub (u)

]
ds,

E2 =
∫ +∞

−∞

1
2
(
1 + V 2

2

)(dy

ds

)2

ds,

E3 =
∫ +∞

−∞

(
u2

0 − u2
)(dy

ds

)
ds. (25)

By using the above expression, while taking into account
of equation (19), we obtain:

E1 =
p0u

2
0

(
1 + V 2

1

)
2
√

β
+

Cnlp
3
0u

4
0

8β( 3
2 )

− λu2
0

√
β
(
u2

0 − 4β
)

2p0

E2 =
u4

0χ
2
2

√
β
(
1 + V 2

2

)
4p0 (1 − V 2

2 )2

E3 =
χ2u

4
0

√
β

2p0 (1 − V 2
2 )

(26)
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for the peak soliton and,

E1 =
p0

(
1 + V 2

1

)
√

β

[
u0

√
β − u2

0 + β arcsin
(

u0√
β

)]

+
Cnlp

3
0

2β( 3
2 )

[
2u0

(
β − u2

0

)( 3
2 ) + 3u0β

√
β − u2

0

]

+ 3β2 arcsin
(

u0√
β

)

E2 =
χ2

2

(
1 + V 2

2

)√
β

p0 (V 2
2 − 1)2

[
3β2 arcsin

(
u0√
β

)

−2u3
0

√
β − u2

0 − 3u0β
√

β − u2
0

]

E3 =
2χ2β( 3

2 )

p0 (V 2
1 − 1)

[
3u0β

√
β − u2

0

+
(
2u2

0 − 3β
)
arcsin

(
u0√
β

)]
(27)

for the drop soliton, respectively.

2.2.2 Soliton excitations with nonvanishing boundary
conditions

The nonvanishing boundary conditions are defined by the
relation

du

ds
−→ 0, u −→ umin, as s −→ ±∞

dy

ds
−→ 0, as s −→ ±∞. (28)

where umin is the minimum of the substrate potential
V (u). These boundary conditions are appropriated for
kink, cusp, peak, and shock soliton solutions. Substituting
equation (13) with the condition (28) into equation (11),
one obtains,

d2u

ds2
=

1[
1 − V 2

1 + 3Cnl

(
du

ds

)2
] [λ∂Vsub (u)

∂u

− 2χ1χ2

(1 − V 2
2 )

u
(
u2 − u2

min

)]
. (29)

The first integral of equation (29), describing the phase
portraits of the dynamical system, may easily be obtained
and is given by the relation

p4 − 2p2
0p

2 = α
(
u2

0 − u2
)2

. (30)

From (30) and when V2 �= V22, classical equilibrium points
(corresponding to the extrema of the potential and char-
acteristic for the harmonic interparticle potential system)
will always exist. When η > 1 with V2 ∈ ]0; 1[, or when
η < 1 with V2 ∈ ]V22; 1[, the dynamic behavior of the sys-
tem is described by a limited bistable potential. On the

other hand, when η > 1 with V2 ∈ ]1;∞[, or when η < 1
with V2 ∈ ]0; V22[ ∪ ]1;∞[, the system can make small os-
cillations around (0, 0), and around certain values of the
amplitudes one notices its rupture. All these results have
been obtained for positive values of Cnl. When the latter
takes negative values, the bistable system becomes catas-
trophic and vice versa. Similarly, in the case of the trivial
(drop) boundary conditions (14), the separatrix represent-
ing the soliton solutions and relating umin1 to umin2, exists
for values of Cnl less than the threshold

Cnlcr2 =

(
1 − V 2

2

) (
1 − V 2

1

)2
12λ (V 2

2 + η − 1)
, (31)

and goes away for values of Cnl larger than the latter.
Besides these points, a few more singular points appear

for the drop and nonvanishing types of boundary condi-
tions when V1 ∈ ]1;∞[ and Cnl > 0, or when V1 ∈ [0; 1]
and Cnl < 0. The exact position of these new points may
be derived from the singularity arising in the denominator
of equations (16) and (29). These new points have exactly,
under the same conditions as previously, X-coordinates
identical to those obtained previously. The main differ-
ence is the addition of two new ordinates −p0 and p0 (the
characteristic impulse of the system) besides the one given
by p = 0. When the model parameters satisfy the relation:(

V 2
2 − 1

) (
1 − V 2

1

)2
+ 12λCnl

(
V 2

2 + η − 1
)

= 0 (32)

the implicit solutions describing proton displacement can
be written as:

±
√

2p0

u0
(sltn − s0) = arcsin

(
l√
2

u

u0

)

+ ln


t

√
1 − 1

2

(
u

u0

)2

+
n√
2

u

u0


 (33)

where ln is the neperian logarithm, l = ±1, t = ±1,
n = ±1, these symbols simply indicating the sign of each
denoted term on the right-hand side of equation (33), and
s0 is defined by the chosen initial condition. According
to equation (28), we have four pairs of defined bound-
ary conditions and each pair produces two branches to
construct the solutions. Since each branch of the solu-
tion travels with the same velocity, the necessary gap
∆ in the space s for coalescing solutions, determined by
the initial conditions, can be presented in the two types
[∆1 = 0 and ∆2 = arcsin(1)]. Let us first take some so-
lutions when they merge in the “space” with ∆2. For the
boundary condition

u → −u0 while s → −∞, and u → u0 while s → ∞,
(34)

the solitonic structure can be defined by
√

2p0

u0

(
s+−− +

π

2

)
if

√
2p0

u0
s ∈ ]−∞, 0],

and −
√

2p0

u0

(
s−−+ − π

2

)
if

√
2p0

u0
s ∈ [0,∞[.
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Fig. 3. Representation of the field of soliton solutions u (for
the proton) as a function of the position s, corresponding to the
waveforms of the shock waves (because of the abrupt disconti-
nuities that are observed when they are traveling). According
to equation (33) with the boundary condition equation (34) for
s0 = 0, m = 1, M = 16, v0 = 2, C0 = 1/5, χ = 1.752, λ = 3/5
and u0 = 1.

This relation, displayed in Figure 3 is usually referred to
as a shock wave, has an energy given by equation (24)
with

E1 =
√

2
(

1
2
− π

8

)(
1 + V 2

1

)
u0p0

+
√

2Cnlu0p
3
0

8

(
5
2
− 3π

4

)

+
√

2u0λ

p0

(
3
4
− π

8

)
, (35)

E2 =

√
2u5

0χ
2
2

(
1 + V 2

2

)
(6 − π)

16p0 (V 2
2 − 1)2

,

E3 =
√

2χ2u
5
0 (6 − π)

8p0 (V 2
2 − 1)

.

For the boundary condition

u → −u0 while s → −∞, and u → −u0 while s → ∞,
(36)

the solitonic structure can be defined by

√
2p0

u0

(
s−++ +

π

2

)
if

√
2p0

u0
s ∈

]
−∞,

π

2

]
,

and −
√

2p0

u0

(
s−++ +

π

2

)
if

√
2p0

u0
s ∈

[
−π

2
,∞
[
.

√
2p0

u0

(
s+++ − π

2

)
if

√
2p0

u0
s ∈ ]−∞, 0],

and −
√

2p0

u0

(
s+++ − π

2

)
if
√

2p0

u0
s ∈ [0,∞[.

The first pair is a loop soliton (see Fig. 4a) whose energy
is divergent and the second is another wave which repre-
sents a peak soliton (see Fig. 4b), whose energy is given
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Fig. 4. Representation of the field of soliton solutions u (for
the proton) as a function of the position s, corresponding to
the waveforms: (a) Loop soliton and (b) , Typical peak soli-
ton, according to equation (33) with the boundary condition
equation (36) for s0 = 0, m = 1, M = 16, v0 = 2, C0 = 1/5,
χ = 1.752, λ = 3/5 and u0 = 1.

by equation (24), with

E1 =
√

2
(

3π

8
+

1
2

)(
1 + V 2

1

)
u0p0

+
√

2Cnlu0p
3
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(
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)

+
3
√

2u0λ
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+
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)
, (37)

E2 =
3
√

2u5
0χ

2
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(
1 + V 2
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)
(2 + π)

16p0 (V 2
2 − 1)2

,

E3 =
3
√

2χ2u
5
0 (2 + π)

8p0 (V 2
2 − 1)

.

Let us now consider the case where solutions are specially
obtained by coalescing two branches of each pair solution
in equation (33), for the second type of nonzero gap ∆1.
For the boundary condition

u → u0 while s → −∞, and u → u0 while s → ∞, (38)

the solitonic structure can be defined by
√

2p0

u0
s−+− if

√
2p0

u0
s ∈ ]−∞, 0],

and −
√

2p0

u0
s−+− if

√
2p0

u0
s ∈ [0,∞[,
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Fig. 5. Representation of the field of bubble soliton solutions u
(for the proton) as a function of the position s, corresponding
to the waveforms, (a) Peak bubble (because of its rarefied form
in the center) and (b) , Cusp solitons in the form of a straight
bubble directed down that is an acute dip in the condensate
according to equation (33) with the boundary condition equa-
tion (38) for s0 = 0 , m = 1, M = 16, v0 = 2, C0 = 1/5,
χ = 1.752, λ = 3/5 and u0 = 1.

√
2p0

u0
s++− if

√
2p0

u0
s ∈ ]−∞, 0],

and −
√

2p0

u0
s++− if

√
2p0

u0
s ∈ [0,∞[ .

The corresponding pattern structures are plotted in Fig-
ure 5, and exist as excitations in a condensed state, like
a rarefaction of the field. Their forms suggest the names
peak bubble and cusp bubble, respectively.

The energy of the peak bubble is given by equa-
tion (24), with

E1 =
π
√

2
(
1 + V 2

1

)
u0p0

8
+

3
√

2Cnlu0p
3
0

16

(π
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− 1
)

+
√
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,
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√
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5
0 (6 + π)

8p0 (V 2
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,

whereas the energy of the cusp diverges.
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Fig. 6. Representation of the field of soliton solutions u (for
the proton) as a function of the position s, corresponding to the
waveforms of the typical kinklike structure for different value
of parameter of coupling of the two sublattices χ (a), and the
kink soliton with small hump near its center (b), according to
equation (33) with the boundary condition equation (34) for
s0 = 0 , m = 1, M = 16, v0 = 2, C0 = 1/5, χ = 1.752, λ = 3/5
and u0 = 1.

For the boundary condition given by equation (34), the
solutions are

√
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u0
s+++ if

√
2p0

u0
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and −
√

2p0

u0
s−+− if
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√
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]
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π

2

]
,

and −
√

2p0

u0
s−−+ if

√
2p0

u0
s ∈

[π
2

,∞
[
,

and are represented in Figure 6.
These are topological kink-like solitons, solutions very

often used to interpret and to explain the process of the
transfer of protons in hydrogen-bonded systems. The sec-
ond one has a little peak near the center and can be in-
terpreted as a domain travelling along the medium. The
energy of kink-like solitons, which consists of kinetic and
potential terms, can be calculated from equation (24),
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with
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for the kink solitons with small hump near the center.

The width L of the kink-like soliton (shown in Fig. 6a)
is estimated at 99% and is given by

L =
√

2u0

p0

[
arcsin

(√
2u1

2u0

)

+ ln
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2

√
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(
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u0

)2

+
√
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2u0




 (42)

where u1 =
99
100

u0. Since equation (42) shows that the
width of the kinks increases with the anharmonicity, the
present one will be able to only decrease with a strong
coupling of the two sublattices (shown in Fig. 10a). For
example, let us estimate the width of the compacton kink
solution. Small displacements of the protons around the
equilibrium position involve a weak proton-proton inter-
action, on the order of a tenth of the force constant of
the covalent bond of the OH. But when the displacement
of the proton is large the interaction becomes strong, and

the term
1
4
mCa (un+1 − un)4 becomes the dominant con-

tribution. As an example in the case of the structure of
ice, proton transfer can be illustrated in a one dimen-
sional frame for the water molecules chain, in which a
proton migrates from a water molecule to another to form
an ionic defect, a hydroxonium, H30+, and another water
molecule is dissociated by losing one of its protons to its
neighbors, forming a hydroxyl, 0H−. Each proton (H+)
can be transferred inside the X − H . . .X bridge inter-
changing the role of the covalent (−) and the hydrogen
(. . . ) bonds with the heavy ion group (X). After such an
intrabond proton transfer, the chain is locally disturbing
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Fig. 7. Variation of the kinks energy versus χ according to
equation (40) for m = 1 a.m.u, M = 17 m, C0 = 1.1 × 104

ms−1, v0 = 0.1C0, V0 = 0.74 eV, u0 = 0.39 and v = 650 m s−1.

its neutral charge distribution and generates an ionic de-
fect. However, it is possible that an additional degree of
freedom allows the group (X − H) to rotate in an inter-
bond proton transfer which generates a bonding (Bjerrum
or orientational) defect and which restores the chain to
its original state. This clearly shows that there are two
distinct types of mechanisms of proton transferred in the
hydrogen-bonded systems. Any of the two defects could be
the majority charge carried through the chain. Both types
of defects are also sensitive to the vibrations of the heavy
ions substrates. The problem is how do the two types of
defects can combine automatically and alternate sponta-
neously in the transfer process? It is these problems that
may be solved by our model with new ideas from nonlinear
dynamics and solitons motion that we use to try finding
an answer to this phenomenon. The compactons (as those
obtained in Figs. 6a and 4b) having properties much more
interesting than soliton solutions of old models, will be
able to better explain these physical phenomena. Under
these conditions we obtain L ≈ 3.7 Å. Our numerical ap-
plications are carried out for ice at T = 263 K (−10 ◦C) .
At this temperature, the lengths of the O − H and H . . . O
bonds are, respectively, 1.01 Å and 1.75 Å. This gives for
the lattice spacing a (e.g. the distance between two pro-
tons or two heavy-ions) the value a = 2.76 Å [57]. The
distance u0 along the chain from the top of the barrier to
one minimum in the double well potential is u0 = 0.39 Å
and the barrier V0 = 0.74 eV [63]. The sound velocities C0

for the proton sublattice and v0 for the heavy-ion sublat-
tice have the values C0 = 1.1× 104 m s−1 and v0 = 0.1C0.
The masses of the particles are m = 1 a.m.u (atomic mass
unit) for the proton and M = 17 a.m.u. for the heavy-
ion. We have taken the particular value χ = 30 eV/Å2 for
the coupling constant and v = 650 m s−1 for the veloc-
ity. In Figure 7, we have plotted the energy of compacton
solitons (see Eq. (40)) against the coupling coefficient χ.
In a general way, using the two-sublatice soliton-bearing
model with anharmonic interaction, the energy and the
width of the kink compacton solitons, or of other types of
soliton patterns that we have obtained are much smaller
than those of previous models [31,37,53,57,58]. Contrary



420 The European Physical Journal B

to the kink soliton in hydrogen bonded chain, or in other
real physical systems which can be modelled by our sys-
tem, the solutions obtained involves about one and two
protons only. Therefore, the present model seems to be
more realistic and applicable to a system which consist of
a small number of hydrogen bonds. Amongst other, it was
shown by Tchofo et al. [47] that, despite the fact that the
lattice discreteness of the system have some harmful ef-
fects on the dynamics of compactons such as the existence
of the Peierls-Nabarro potential which provides pinning
sites for compactons or, a linear coupling which gives rise
to a phonon band which enters in direct resonance with
the internal modes of the compactons, causing radiation of
energy away from the compactons, these types of solutions
have an extraordinary capacity to execute a stable ballis-
tic propagation in the system. These limiting factors are
also strongly reduced for Cl � 0 and Cnl 	 1. In addition,
the existence of a Goldstone mode in this parameter re-
gion makes possible a stable ballistic propagation for com-
pactons. It was also shown by Xia et al. [81], which studied
the propagation and collision of the compacton-like kinks
in the system of an anharmonic discrete lattice with a
double well on-site potential by direct algebraic method
and numerical experiments that, the localisation of the
compactons is related to the nonlinear coupling parame-
ter Cnl and the potential barrier height V0 of the double
well potential, and the velocity of the propagation of the
compacton is determined by the linear coupling parameter
Cl, the nonlinear Cnl and the localisation parameter. They
also show by numerical experiments that appropriate Cl

is suit to a stable propagation of compacton.

It is true that all this rich variety of solutions did
not have all explanations for the hydrogen bonds, the
anharmonic and coupled Klein-Gordon equations hav-
ing a broad field of applications, will make it possible
to the scientists to improve or better to explain cer-
tain physical phenomena. These rich various types of so-
lutions already very required and are very much used
in several other models. Thus, peakons which constitute
some types of solitary waves with discontinuous at the
crest has been subject to attention of many physicists
and mathematicians [67–69] since the pioneering work
of Camassa and Holm (CH). These solutions belong to
many (1 + 1)-dimensional nonlinear evolution equations
(NEE) amongst which the CH equation describing. The
waves dynamics at the free surface of fluids under grav-
ity in the so-called shallow water approximation [70]. Re-
cently, a novel (1 + 1)-dimensional nonlinear equation
(NLE) known as Vakhnenko equations (VE) has been de-
rived [71], and which models the propagation of waves in
relaxing medium [72]. Morrison and Parkes [73] have inves-
tigated the generalized form of the VE and have derived
types of peakon solution to this equation. Moreover, an-
other interesting solitary waves with loop shape has been
derived in many equations among which the VE [74], the
generalized VE [73], the modified generalized VE [73]. It
has been pointed out that the VE shares the same prop-
erty with some equation recently studied by Konno and
Jeffrey [74] and which models the nonlinear propagation

of deformation waves in flexible long string. Another inter-
esting application of loop-shaped solitons has been found
in a system modelled by a coupled integrable dispersion
equation [75] which describe the motion of a charged ob-
ject in an external magnetic field. Performing this cou-
pled equation to a weakly gravitationally field, Kuetche
et al. [76] have derived the loop shaped solitons. Using
some bled transformation of the independent variables,
this equation has been transform to a novel one known as
Schäfer-Wayne short pulse equation [77] which describes
the propagation of the ultra-short pulses in Silica optical
fibres. Some (1+1)-dimensional NLE equations have been
extended to (2 + 1)-dimensional NLE equation in several
ways [78] with many applications in hydrodynamics [79]
and plasma physics [80] and others which has loops, cups,
peaks and bubble soliton solutions.

3 Conclusions

In summary, we have presented a study of a nonlinear
model for the motion of defects in quasi one-dimensional
hydrogen-bonded systems. The model extends previ-
ous two-sublattice soliton-bearing one-dimensional models
discussed in the literature, by the inclusion of anharmonic-
ity couplings in the lattice models. This is accomplished
through the introduction of a quartic proton-proton in-
teraction potential. The presence of nonlinear and linear
dispersion terms leads to soliton patterns in the contin-
uum limit, i.e., in the limit when only long-wavelength
excitations are present. It was shown that in this limit, by
applying two types of boundary conditions of the “zero”
or nonvanishing class, and by considering the sign of the
nonlinear proton-proton coupling, a rich analytic diver-
sity of soliton patterns emerges, namely so-called peak,
drop, bell, cusp, shock, kink, bubble and loop solitons of
which stability was briefly studied by the authors Agüero
et al. [51], probably because of their implicit and compli-
cated forms. The total energy of all these coupled two-
component soliton patterns has been calculated and de-
creases with the coupling of two sublattices when the in-
teractions of the first one are of the anharmonic form.
Another effect is related to a transition from closed to
open phase trajectories of the system taking place beyond
some threshold value of the lattice parameter, and/or the
velocity of the soliton patterns. An exact analytical ex-
pression for the dependence of the breakdown threshold
value on the nonlinear parameter, the velocity of soliton
and on the coupling parameter between the two sublat-
tices, has been derived. These phenomena, for example,
should contribute to the formation of cracks originating
from dislocations observed in semiconductor heterostruc-
tures (more details are given in Refs. [64–66]). Impurities,
as well as other defects, may locally influence the break-
down threshold and thus play a major role with respect
to nonlinear excitations in such systems.

For future studies it is worth mentioning that the sta-
bility and the propagation of the solitons patterns ob-
tained were not made in detail. A detailed study of sta-
bility for each type of solutions and their propagation, as
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their applications in the hydrogen bonds would come to
supplement this study. Then the situation will be more
complicated because of the implicit form of the soliton
solutions patterns. But we expect that such modification
will not change the main finding of this investigation since
in some other cases such complications have been success-
fully handled already. However, the problem of stability
is still open. The response of the soliton in our model to
an external field will be examined elsewhere, which is im-
portant for determination of physical consequences of the
soliton which can be tested experimentally, such as mo-
bility and conductivity, just as the thermal motion of the
protons in the systems with finite temperature, by the
transfer integral. The numerical study of two-component
soliton patterns in hydrogen-bonded chains taking into ac-
count lattice discreteness [27,28,54,55] is now in progress.
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